Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3582, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678044

RESUMEN

A single tunable filter simplifies complexity, reduces insertion loss, and minimizes size compared to frequency switchable filter banks commonly used for radio frequency (RF) band selection. Magnetostatic wave (MSW) filters stand out for their wide, continuous frequency tuning and high-quality factor. However, MSW filters employing electromagnets for tuning consume excessive power and space, unsuitable for consumer wireless applications. Here, we demonstrate miniature and high selectivity MSW tunable filters with zero static power consumption, occupying less than 2 cc. The center frequency is continuously tunable from 3.4 GHz to 11.1 GHz via current pulses of sub-millisecond duration applied to a small and nonvolatile magnetic bias assembly. This assembly is limited in the area over which it can achieve a large and uniform magnetic field, necessitating filters realized from small resonant cavities micromachined in thin films of Yttrium Iron Garnet. Filter insertion loss of 3.2 dB to 5.1 dB and out-of-band third order input intercept point greater than 41 dBm are achieved. The filter's broad frequency range, compact size, low insertion loss, high out-of-band linearity, and zero static power consumption are essential for protecting RF transceivers from interference, thus facilitating their use in mobile applications like IoT and 6 G networks.

2.
J Am Chem Soc ; 145(9): 5410-5421, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36825993

RESUMEN

We report a synthesis method for highly monodisperse Cu-Pt alloy nanoparticles. Small and large Cu-Pt particles with a Cu/Pt ratio of 1:1 can be obtained through colloidal synthesis at 300 °C. The fresh particles have a Pt-rich surface and a Cu-rich core and can be converted into an intermetallic phase after annealing at 800 °C under H2. First, we demonstrated the stability of fresh particles under redox conditions at 400 °C, as the Pt-rich surface prevents substantial oxidation of Cu. Then, a combination of in situ scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, and CO oxidation measurements of the intermetallic CuPt phase before and after redox treatments at 800 °C showed promising activity and stability for CO oxidation. Full oxidation of Cu was prevented after exposure to O2 at 800 °C. The activity and structure of the particles were only slightly changed after exposure to O2 at 800 °C and were recovered after re-reduction at 800 °C. Additionally, the intermetallic CuPt phase showed enhanced catalytic properties compared to the fresh particles with a Pt-rich surface or pure Pt particles of the same size. Thus, the incorporation of Pt with Cu does not lead to a rapid deactivation and degradation of the material, as seen with other bimetallic systems. This work provides a synthesis route to control the design of Cu-Pt nanostructures and underlines the promising properties of these alloys (intermetallic and non-intermetallic) for heterogeneous catalysis.

3.
ACS Appl Mater Interfaces ; 10(1): 1389-1398, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29239175

RESUMEN

With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa-1, reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 104 kPa-1. Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

4.
Nanoscale ; 9(35): 13272-13280, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28858356

RESUMEN

Stretchable energy storage systems are essential for the realization of implantable and epidermal electronics. However, high-performance stretchable supercapacitors have received less attention because currently available processing techniques and material structures are too limited to overcome the trade-off relationship among electrical conductivity, ion-accessible surface area, and stretchability of electrodes. Herein, we introduce novel 2D reentrant cellular structures of porous graphene/CNT networks for omnidirectionally stretchable supercapacitor electrodes. Reentrant structures, with inwardly protruded frameworks in porous networks, were fabricated by the radial compression of vertically aligned honeycomb-like rGO/CNT networks, which were prepared by a directional crystallization method. Unlike typical porous graphene structures, the reentrant structure provided structure-assisted stretchability, such as accordion and origami structures, to otherwise unstretchable materials. The 2D reentrant structures of graphene/CNT networks maintained excellent electrical conductivities under biaxial stretching conditions and showed a slightly negative or near-zero Poisson's ratio over a wide strain range because of their structural uniqueness. For practical applications, we fabricated all-solid-state supercapacitors based on 2D auxetic structures. A radial compression process up to 1/10th densified the electrode, significantly increasing the areal and volumetric capacitances of the electrodes. Additionally, vertically aligned graphene/CNT networks provided a plentiful surface area and induced sufficient ion transport pathways for the electrodes. Therefore, they exhibited high gravimetric and areal capacitance values of 152.4 F g-1 and 2.9 F cm-2, respectively, and had an excellent retention ratio of 88% under a biaxial strain of 100%. Auxetic cellular and vertically aligned structures provide a new strategy for the preparation of robust platforms for stretchable energy storage electrodes.

5.
ACS Appl Mater Interfaces ; 9(12): 10865-10873, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28276240

RESUMEN

Networks of silver nanowires (Ag NWs) have been considered as promising materials for stretchable and transparent conductors. Despite various improvements of their optoelectronic and electromechanical properties over the past few years, Ag NW networks with a sufficient stretchability in multiple directions that is essential for the accommodation of the multidirectional strains of human movement have seldom been reported. For this paper, biaxially stretchable, transparent conductors were developed based on 2D mass-spring networks of wavy Ag NWs. Inspired by the traditional papermaking process, the 2D wavy networks were produced by floating Ag NW networks on the surface of water and subsequently applying biaxial compression to them. It was demonstrated that this floating-compression process can reduce the friction between the Ag NW-water interfaces, providing a uniform and isotropic in-plane waviness for the networks without buckling or cracking. The resulting Ag NW networks that were transferred onto elastomeric substrates successfully acted as conductors with an excellent transparency, conductivity, and electromechanical stability under a biaxial strain of 30%. The strain sensors that are based on the prepared conductors demonstrated a great potential for the enhanced performances of future wearable devices.

6.
ACS Appl Mater Interfaces ; 8(4): 2582-90, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26760896

RESUMEN

We report a facile approach for producing reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire (NW) networks. The wavy configuration of Ag NWs is obtained by floating the NW networks on the surface of water, followed by compression. Stretchable antennas are prepared by transferring the compressed NW networks onto elastomeric substrates. The resulting antennas show excellent performance under mechanical deformation due to the wavy configuration, which allows the release of stress applied to the NWs and an increase in the contact area between NWs. The antennas formed from the wavy NW networks exhibit a smaller return loss and a higher radiation efficiency when strained than the antennas formed from the straight NW networks, as well as an improved stability in cyclic deformation tests. Moreover, the wavy NW antennas require a relatively small quantity of NWs, which leads to low production costs and provides an optical transparency. These results demonstrate the potential of these wavy Ag NW antennas in applications of wireless communications for wearable systems.

7.
Nanoscale ; 7(39): 16434-41, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26394660

RESUMEN

Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices.

8.
ACS Nano ; 7(1): 645-53, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23211025

RESUMEN

Well-controlled synthesis of nanocrystals is necessary to unambiguously correlate the structural properties of nanocrystals with the catalytic properties. The most common low-index surfaces are (111) and (100). Therefore, model materials with {111} and {100} facets are highly desirable, in order to understand the catalytic properties of (111) and (100) surfaces for various structure-sensitive reactions. We report a solution-phase synthesis using metal carbonyls as additives. This synthetic method produces highly monodisperse Pt octahedra and icosahedra as the model of Pt{111}, Pt cubes as the model of Pt{100}, respectively. Several other morphologies, such as truncated cubes, cuboctahedra, spheres, tetrapods, star-shaped octapods, multipods, and hyper-branched structure, are produced, as well. A bifunctional role of metal carbonyl in the synthesis is identified: zerovalent transition metal decomposed from metal carbonyl acts as a shape-directing agent, while CO provides the reducing power. These high-quality shape-controlled Pt nanocrystals are suitable for model catalyst studies.


Asunto(s)
Cristalización/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Platino (Metal)/química , Catálisis , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
9.
ACS Nano ; 6(6): 5642-7, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22559911

RESUMEN

We report the first synthesis of highly monodisperse Pt(3)Zn nanocrystals (NCs). Shape-controlled synthesis generates cubic and spherical Pt-Zn NCs. Reaction temperature is the key to incorporate Zn into Pt, even in the absence of a strong reducing agent. The Pt-Zn NCs are active toward methanol oxidation, with the spherical NCs exhibiting higher activity than the cubic NCs. The Pt-Zn alloy phase can be transformed into the Pt(3)Zn intermetallic phase, upon annealing. The intermetallic Pt(3)Zn shows better performance than the alloy phase Pt-Zn. Besides the activity toward methanol oxidation, Pt-Zn NCs show excellent poisoning tolerance. With activities comparable to the commercial Pt catalyst, enhanced poisoning tolerance and lower cost, Pt-Zn and Pt(3)Zn NCs are a promising new family of catalysts for direct methanol fuel cells.


Asunto(s)
Aleaciones/química , Nanopartículas del Metal/química , Metanol/química , Nanopartículas/química , Nanopartículas/ultraestructura , Platino (Metal)/química , Zinc/química , Conductividad Eléctrica , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...